Laplacian Controllability Classes for Threshold Graphs
نویسندگان
چکیده
Let G be a graph on n vertices with Laplacian matrix L and let b be a binary vector of length n. The pair (L,b) is controllable if the smallest L-invariant subspace containing b is of dimension n. The graph G is called essentially controllable if (L,b) is controllable for every b / ∈ ker(L), completely uncontrollable if (L,b) is uncontrollable for every b, and conditionally controllable if it is neither essentially controllable nor completely uncontrollable. In this paper, we completely characterize the graph controllability classes for threshold graphs. We first observe that the class of threshold graphs contains no essentially controllable graph. We prove that a threshold graph is completely uncontrollable if and only if its Laplacian matrix has a repeated eigenvalue. In the process, we fully characterize the set of conditionally controllable threshold graphs.
منابع مشابه
Laplacian Dynamics on Cographs: Controllability Analysis through Joins and Unions
In this paper, we examine the controllability of Laplacian dynamic networks on cographs. Cographs appear in modeling a wide range of networks and include as special instances, the threshold graphs. In this work, we present necessary and sufficient conditions for the controllability of cographs, and provide an efficient method for selecting a minimal set of input nodes from which the network is ...
متن کاملThe Critical Group of a Threshold Graph
The critical group of a connected graph is a finite abelian group, whose order is the number of spanning trees in the graph. The structure of this group is a subtle isomorphism invariant that has received much attention recently, partly due to its relation to the graph Laplacian and chip-firing games. However, the group structure has been determined for relatively few classes of graphs. We conj...
متن کاملON NEW CLASSES OF MULTICONE GRAPHS DETERMINED BY THEIR SPECTRUMS
A multicone graph is defined to be join of a clique and a regular graph. A graph $ G $ is cospectral with graph $ H $ if their adjacency matrices have the same eigenvalues. A graph $ G $ is said to be determined by its spectrum or DS for short, if for any graph $ H $ with $ Spec(G)=Spec(H)$, we conclude that $ G $ is isomorphic to $ H $. In this paper, we present new classes of multicone graphs...
متن کاملOn Laplacian energy of non-commuting graphs of finite groups
Let $G$ be a finite non-abelian group with center $Z(G)$. The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$. In this paper, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups..
متن کاملTHE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA
The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014